
.NET Digital Signature Library SDK
User Manual

Introduction

The main function of .NET Digital Signature Library SDK is to digitally sign files in PDF or
PKCS#7 cryptographic standard (.P7S or .P7M files) using X.509 certificates stored on PFX
files, smart cards, crypto tokens, HSM’s stored on Microsoft Certificate Store.

The positioning of the PDF signature appearance is configurable, plus on which pages of the
document it should appear (first page, last page or all pages).

Also, using .NET Digital Signature Library SDK can digitally sign Office 2007, 2010, 2013
XPS and XML documents using X.509 certificates. Using this library you can quickly digitally
sign .docx, .xlsx, .pptx, .xps and .xml files using a simple SDK.

.NET Digital Signature Library SDK can be used to create X.509 certificates in PFX format.
Using this library you can quickly create PFX digital certificates and custom certificates with
different Key usage or Enhanced key usage.

The main function of X509CertificateGenerator class is to issue X.509 Version 3 digital
certificates in PFX format. Using this library you can quickly issue all kind of certificates (user,
self signed, root, time stamping, digital signature).

Links

.NET Digital Signature Library SDK: http://www.signfiles.com/sdk/SignatureLibrary.zip

.NET Digital Signature Library main page: http://www.signfiles.com/file-sign-library/

Warning and Disclaimer

Every effort has been made to make this manual as complete and accurate as possible, but
no warranty or fitness is implied. The information provided is on an “as is” basis. The author
shall have neither liability nor responsibility to any person or entity with respect to any loss or
damages arising from the information contained in this manual.

Trademarks

.NET, Visual Studio .NET are trademarks of Microsoft Inc.
Adobe, Adobe Reader are trademarks of Adobe Systems Inc.
All other trademarks are the property of their respective owners.

Page 1 - .NET Digital Signature Library SDK User Manual (version 9.0)

http://www.signfiles.com/sdk/SignatureLibrary.zip
http://www.signfiles.com/file-sign-library/

How to use .NET Digital Signature Library SDK in Visual Studio..4
Digital Certificates...5

Digital Certificates Used for Digital Signatures..5
Create a Digital Certificate Using X509CertificateGenerator Class...6
Digitally Sign a PDF File Using a Digital Certificate Stored on a PFX File...7
Digitally Sign a PDF File Using a Digital Certificate Stored on Microsoft Store...8
Validating Digital Signatures in Adobe...9

Digitally Sign a PDF Document with PDFSignDLL..10
Loading the PDF.. 10
Digitally Sign an Encrypted PDF File...10
Obtaining the Document Information (Number of Pages, Page Size)..10
Set the Digital Signature Properties (Reason, Location)..11
Set the Digital Signature Rectangle Properties..12
Set a Custom Digital Signature Text..12
Set the Text Direction on the Signature Rectangle..12
Set the Digital Signature Font..13
Set the Digital Signature Image... 13
Set a Visible or Hidden Signature..13

Time Stamping...14
Time Stamp the PDF Digital Signature..14
Authentication With Username and Password...14
Authentication with a Digital Certificate..15
Nonce and Time Stamping Policy OID...15
Proxy Settings.. 15
Validating the Time Stamping Response on Adobe...16

LTV Signatures (Long Term Validation)..17
Certify a PDF Digital Signature..18
Digital Signatures and the PDF/A Standard...19
Other features of the PDFSignDll Library...20

Digitally Sign all Pages From a PDF Document...20
Adding Multiple Digital Signatures on the PDF Document...20
Set an Approximate Block Size for the Digital Signature...20
Old Style Adobe Digital Signature Appearance..21
Include the CRL Revocation Information on the PDF Signature..22
Hash Algorithms... 22
Verifying the Signature Certificate.. 22
Bypass the Smart Card PIN Dialog..22

PDF Signatures and Encryption..23
Password Security... 23
Digital Certificate Security.. 25

PDFSignDll Code Samples...27
Digitally Sign All Pages From a PDF File with a Certificate Stored on PFX File..27
Set a Custom Signature Rectangle and Sign Using a Certificate from Microsoft Store...................................27
Digitally Sign a PDF Located on the Web Only if it is not Already Signed..27
Digitally Sign a PDF file with a PFX Certificate Created on the Fly..28
Set a Custom Text and Font for the Digital Signature Rectangle...29
Add an Image on the Signature Rectangle and Save the File as PDF/A...29
Set an Invisible Signature and Certify the PDF file..30
Time Stamp a PDF file... 30
Time Stamp a PDF file Using Authentication...30
Digitally Sign and Time Stamp a folder with PDF files...31
Verifying a Digital Signature... 32
Merge Multiple PDF Files into a Single PDF File...33
Insert Texts and Images in a PDF file..33

Page 2 - .NET Digital Signature Library SDK User Manual (version 9.0)

FileSignDll Library..35
Creating PKCS#7 (CMS/CAdES) signatures using FileSignDll...35
Digitally Sign an Office Document (.docx, .xlsx)..36
Digitally Sign an XPS Document..39
Digitally Sign an XML Document (XMLDSig Format)...40

Creating Digital Certificates Using X509CertificateGenerator Class................................41
Certificate Subject.. 41
Validity Period.. 42
Key Size and Signature Algorithm... 43
Serial Number.. 44
Friendly Name... 45

Certificate Key Usage...46
Key Usage... 46
Enhanced Key Usage.. 52
Critical Key Usage... 53

Issuing Digital Certificates...54
Issue a Self-signed Digital Certificate..54
Issue a Root Certificate... 56
Issue a Digital Certificate Signed by a Root Certificate..60

Importing Digital Certificates...62
Digital Certificates and Microsoft Store..62
Importing PFX Certificates on Microsoft Store...63
Trusting Certificates... 63
Importing Certificates From Code.. 64
Issue Digital Signature Certificates..65

License Terms...67
PDFSignDll License Agreement (EULA)..67
FileSignDll License Agreement (EULA)...70

Page 3 - .NET Digital Signature Library SDK User Manual (version 9.0)

How to use .NET Digital Signature Library SDK in Visual Studio

– Unzip the file and copy the PDFSignDll.dll / FileSignDll.dll and PDFSignDll.xml/
FileSignDll.xml on your project location.

– In your project, go to References, select Add Reference..,select the PDFSignDll.dll/
FileSignDll.dll as below.

Notes:
PDFSignDll.dll can be used to create native PDF digital signatures.
FileSignDll.dll can be used to create PKCS#7, Office 2007-2013, XPS and XML digital
signatures.

Page 4 - .NET Digital Signature Library SDK User Manual (version 9.0)

Adding as reference PDFSignDll library

Digital Certificates

Digital Certificates Used for Digital Signatures

To create a digital signature, a digital certificate is needed. The digital certificates are stored in
two places:

– in Microsoft Store
– in PFX on P12 files

The certificates stored on Microsoft Store are available by opening Internet Explorer – Tools
menu – Internet Options – Content tab – Certificates button (see below).

For digital signatures the certificates stored on Personal tab are used. These certificates have
a public and a private key.

The digital signature is created by using the private key of the certificate. The private key can
be stored on the file system (imported PFX files), on an cryptographic smart card (like Aladdin
eToken or SafeNet iKey) or on a HSM (Hardware Security Module).

For encryption, only the public key of the certificate is necessary (certificates stored on
Personal or Other People tabs).

Another way to store a digital certificate is a PFX (or P12) file. This file contain the public and
the private key of the certificate. This file is protected by a password in order to keep safe the
key pair.

Note that a PFX file can be imported on Microsoft Store (just open the PFX file and follow the
wizard).

Page 5 - .NET Digital Signature Library SDK User Manual (version 9.0)

Signing certificates available on Microsoft Store

Create a Digital Certificate Using X509CertificateGenerator Class

Every certificate must have a Subject. The Subject can contains Unicode characters like ä,æ,
£, Ñ.

Every certificate has a validity period. A certificate becomes invalid after it expires.

The default value of ValidFrom property is DateTime.Now (curent date).
The default value of ValidTo property is DateTime.Now.AddYears(1).

Observation: On the demo version of the library, the certificate validity cannot exceed
30 days (this is the single limitation of the library on the demo version).

X509CertificateGenerator cert = new X509CertificateGenerator("serial number");
//set the certificate Subject
cert.Subject = "CN=Certificate name,E=name@email.com,O=Organization";

//the certificate becomes valid after 4th February 2012
cert.ValidFrom = new DateTime(2012, 2, 4);

//the certificate will expires on 25th February 2012
cert.ValidTo = new DateTime(2012, 2, 25);

//save the PFX certificate on a file
File.WriteAllBytes("c:\\cert.pfx", cert.GenerateCertificate("password", false));

More details about X509CertificateGenerator class can be found on the corresponding
section below.

Page 6 - .NET Digital Signature Library SDK User Manual (version 9.0)

Digitally Sign a PDF File Using a Digital Certificate Stored on a PFX File

The code below demonstrates how to digitally sign a PDF file using a PFX certificate.

//Initializes a new instance of PDFSign class
PDFSign PDFSign = new PDFSign("serial number");

//Load the PDF file
PDFSign.LoadPDFDocument(File.ReadAllBytes("c:\\source.pdf"));

//Load the certificate from .PFX
PDFSign.DigitalSignatureCertificate =
PDFSign.LoadCertificate(File.ReadAllBytes("c:\\cert.pfx"), "PFX certificate
password");

//Set the signature rectangle attributes
PDFSign.SignaturePage = 1;
PDFSign.SignatureBasicPosition = BasicSignatureLocation.TopRight;

//digitally sign and save the PDF file
File.WriteAllBytes("c:\\dest.pdf", PDFSign.ApplyDigitalSignature());

When the dest.pdf is opened in Adobe Reader, a signature rectangle appear on the top right
corner.

When the signature rectangle is clicked, the digital signature information appears.

Page 7 - .NET Digital Signature Library SDK User Manual (version 9.0)

Digital signature properties on Adobe Reader

Digitally Sign a PDF File Using a Digital Certificate Stored on Microsoft Store

To digitally sign a PDF using a certificate stored on Microsoft store use this line of code:

PDFSign.DigitalSignatureCertificate = PDFSign.LoadCertificate(false, "", "Digital
certificates", "Select the digital certificate",
DigitalCertificateScope.ForDigitalSignature);

When the project is launched, the user must select the digital certificate from all certificates
available in Personal tab.

Probably you want to digitally sign a PDF file without user intervention using a certificate
available on Microsoft Store. For that you must identify that certificate by a criteria.

If your desired certificate has in the Subject filed the value E = email@email.com, you can
use the following code to automatically use thie certificate for the signing operation.

PDFSign.DigitalSignatureCertificate = PDFSign.LoadCertificate(false,
DigitalCertificateSearchCriteria.EmailE, "test@test.com",
DigitalCertificateScope.ForDigitalSignature);

Note that there are a lot of criteria to automatically select your certificate (Common Name,
Serial number, Thumbprint, etc.).

Page 8 - .NET Digital Signature Library SDK User Manual (version 9.0)

Digital certificates selection window

Validating Digital Signatures in Adobe

Every digital certificate is issued by a Root CA (Certification Authority). Some of the Root CA's
are included by default in Windows Certificate Store (Trusted Root Certification Authorities)
and only a few are included in Adobe Certificate Store. Microsoft and Adobe use different
Certificate Stores different certificate validation procedures.

If the signing certificate (or the Root CA that issued the signing certificate) is not included in
Adobe Store, the digital signature is considered "not trusted" when a user open a document
with Adobe Reader (see example).

This behavior has nothing to do with the signing engine but with the Adobe
certification validation procedure.

To trust a signature the user must add the signing certificate on the Adobe Certificate Store
because only a few Root CA's are considered trusted by default by Adobe certificate
validation engine (See this article: http://www.adobe.com/security/partners_cds.html)

To validate the signing certificate in Adobe use the methods described on this document:
http://www.signfiles.com/manuals/ValidatingDigitalSignaturesInAdobe.pdf

Page 9 - .NET Digital Signature Library SDK User Manual (version 9.0)

Validity Unknown signature

Valid signature

http://www.signfiles.com/manuals/ValidatingDigitalSignaturesInAdobe.pdf
http://www.adobe.com/security/partners_cds.html

Digitally Sign a PDF Document with PDFSignDLL

Loading the PDF

The PDF can be loaded from a file, a byte array or from an URL like below:

//Load the PDF from byte[] array
PDFSign.LoadPDFDocument(File.ReadAllBytes("c:\\source.pdf"));

//Load the PDF from a file
PDFSign.LoadPDFDocument("c:\\source.pdf");

//Load the PDF from an URL
PDFSign.LoadPDFDocument(new Uri("http://www.signfiles.com/test.pdf"));

Digitally Sign an Encrypted PDF File

To digitally sign an encrypted PDF file you must first provide the protection password like
below:

//Initializes a new instance of PDFSign class
PDFSign PDFSign = new PDFSign("serial number");

//set the document password first
PDFSign.DocumentProperties.Password = "document password";

//Load the PDF file
PDFSign.LoadPDFDocument(File.ReadAllBytes("c:\\source.pdf"));

Obtaining the Document Information (Number of Pages, Page Size)

In some cases you will need some information about the opened document (is document
already signed, number of pages, document page size).

DocumentPageSize property is useful when you want to place a custom digital signature
rectangle on the PDF document.

DocumentProperties.NumberOfPages is useful when you want to place a signature on the
last page of the document.

//Load the PDF file
PDFSign.LoadPDFDocument(File.ReadAllBytes("c:\\source.pdf"));

//get the page size of the last page of the document
PDFSign.DocumentPageSize(PDFSign.DocumentProperties.NumberOfPages);

//get the number of digital signatures already attached to this document
int signatures = PDFSign.DocumentProperties.NumberOfDigitalSignatures;

Page 10 - .NET Digital Signature Library SDK User Manual (version 9.0)

Set the Digital Signature Properties (Reason, Location)

Adobe digital signatures can be fully customized by PDFSignDLL SDK. In order to set the
Reason, Location, Date, “Signed by” or “Signer's Contact Information” property use the code
below.

Observation: Some digital signature properties (like “Signed by” in Adobe) will not appear
with your custom value because of Adobe policy. If Time stamping is used, the signing date
(SignatureDate property) is taken from the time stamping response.

PDFSign.SigningReason = "I approve this document";
PDFSign.SigningLocation = "Europe branch";
PDFSign.SignerContactInformation = "Author contact information";
PDFSign.SignedBy = "Signed by the Author";
PDFSign.SignatureDate = new DateTime(2011, 6, 20, 13, 00, 00);

Page 11 - .NET Digital Signature Library SDK User Manual (version 9.0)

Signed by, Reason, Location and Date properties in Adobe

Signer's Contact Information in Adobe

Signed by, Reason, Location, Date and Signer's contact properties in other PDF reader

Set the Digital Signature Rectangle Properties

The digital signature rectangle can appear on the PDF document on a standard location (like
Top Right) or in a custom place based on the PDF page size.

Example: put the digital signature rectangle on the last page of the document on top middle
position:

PDFSign.SignaturePage = PDFSign.DocumentProperties.NumberOfPages;
PDFSign.SignatureBasicPosition = BasicSignatureLocation.TopMiddle;

Observation: In Adobe, the corner (0,0) is on the bottom left of the page.

Example: put the digital signature on a custom position (top right corner) on the first page of
the document:

PDFSign.SignaturePage = 1;
//get the pdf page size
System.Drawing.Point page = PDFSign.DocumentPageSize(1);

//set the rectangle width and height
int width = 80;
int height = 40;
PDFSign.SignaturePosition = new System.Drawing.Rectangle(page.X - width, page.Y -
height, width, height);

Set a Custom Digital Signature Text

The default digital signature text contains information extracted from the signing certificate,
signing date, signing reason and signing location.

The signature text can be set using SignatureText propery like below:

PDFSign.SignatureText =
"Signed by:" +
PDFSign.DigitalSignatureCertificate.GetNameInfo(X509NameType.SimpleName, false) +
"\n Date:" + DateTime.Now.ToString("yyyy.MM.dd HH:mm") + "\n" +
"Reason:" + PDFSign.SigningReason;

Set the Text Direction on the Signature Rectangle

The default text direction is left to right. To change the text direction to right to left use the
following code (e.g. for Hebrew language):

PDFSign.TextDirection = TextDirection.RightToLeft;

Page 12 - .NET Digital Signature Library SDK User Manual (version 9.0)

Set the Digital Signature Font

The default font file for the digital signature rectangle is Helvetica. It is possible that this font
to not include all necessary UNICODE characters like ä, à, â. On this case you will need to
use an external font.

The font size is calculated based on the signature rectangle size in order to fit on the
signature rectangle (it not have a fixed size). To set the font size you can use FontSize
propery like below:

PDFSign.FontFile = "c:\\windows\\fonts\\arial.ttf";
PDFSign.FontSize = 10;

Set the Digital Signature Image

The digital signature rectangle can contains text, image or text with image. To add an image
on the digital signature rectangle use the following code:

PDFSign.SignatureText = "Signed by the Author";
PDFSign.SignatureImage = System.IO.File.ReadAllBytes("c:\\graphic.jpg");

//text on the right and image on the left
PDFSign.SignatureImagePosition = SignatureImageType.ImageAndText;
//image as bakground and text on above
PDFSign.SignatureImagePosition = SignatureImageType.ImageAsBackground;
//only image
PDFSign.SignatureImagePosition = SignatureImageType.ImageWithNoText;

These types of signatures are shown below:

Set a Visible or Hidden Signature

Sometimes the digital signature rectangle is not necessary to appear on the PDF document.
The default value of VisibleSignature property is true.

To set an invisible digital signature use the code below:

//invisible signature
PDFSign.VisibleSignature = false;

//digitally sign and save the PDF file
File.WriteAllBytes("c:\\dest.pdf", PDFSign.ApplyDigitalSignature());

Page 13 - .NET Digital Signature Library SDK User Manual (version 9.0)

1. Image and text, 2. Image as background, 3. Image with no text

Time Stamping

Time Stamp the PDF Digital Signature

Timestamping is an important mechanism for the long-term preservation of digital signatures,
time sealing of data objects to prove when they were received, protecting copyright and
intellectual property and for the provision of notarization services.

To add time stamping information to the PDF digital signature you will need access to a RFC
3161 time stamping server.

A fully functional version of our TSA Authority is available for testing purposes at this link:
http://ca.signfiles.com/TSAServer.aspx (no credentials are needed).

Use the code below to digitally sign and timestamp your PDF file:

//Initializes a new instance of PDFSign class
PDFSign PDFSign = new PDFSign("serial number");

//Load the PDF file
PDFSign.LoadPDFDocument(File.ReadAllBytes("c:\\source.pdf"));

//Load the certificate from .PFX
PDFSign.DigitalSignatureCertificate =
PDFSign.LoadCertificate(File.ReadAllBytes("c:\\cert.pfx"), "123456");

//Set the signature rectangle attributes
PDFSign.SignaturePage = 1;
PDFSign.SignatureBasicPosition = BasicSignatureLocation.TopRight;

//Time stamp the PDF digital signature
PDFSign.TimeStamping.ServerURL = new
Uri("http://ca.signfiles.com/TSAServer.aspx");

//digitally sign and save the PDF file
File.WriteAllBytes("c:\\dest.pdf", PDFSign.ApplyDigitalSignature());

Authentication With Username and Password

If your TSA server requires username and password, use the following code:

PDFSign.TimeStamping.ServerURL = new
Uri("http://ca.signfiles.com/TSAServer.aspx");
PDFSign.TimeStamping.UserName = "username";
PDFSign.TimeStamping.Password = "password";

Page 14 - .NET Digital Signature Library SDK User Manual (version 9.0)

http://ca.signfiles.com/TSAServer.aspx
http://www.ietf.org/rfc/rfc3161.txt
http://www.ietf.org/rfc/rfc3161.txt

Authentication with a Digital Certificate

In some cases, the access to your TSA server must be done using a digital certificate
(authentication certificate). On this case use the following code:

//Time stamp the PDF digital signature
PDFSign.TimeStamping.ServerURL = new
Uri("http://ca.signfiles.com/TSAServer.aspx");

PDFSign.TimeStamping.AuthenticationCertificate =
PDFSign.LoadCertificate(File.ReadAllBytes("c:\\time_stamping_certificate.pfx"),
"123456");

Nonce and Time Stamping Policy OID

The nonce, if included, allows the client to verify the timeliness of the response when no local
clock is available. The nonce is a large random number with a high probability that the client
generates it only once (e.g., a 64 bit integer).

To include (or exclude) a Nonce on the time stamping request use the following code. The
default value of the UseNonce propery is true.:

PDFSign.TimeStamping.UseNonce = true;

Some TSA servers require to set a Policy OID on the TSA requests. To set a TSA policy OID
on the time stamping requests use the code below. By default, no TSA OID is included on the
TSA request.

PDFSign.TimeStamping.ServerURL = new
Uri("http://ca.signfiles.com/TSAServer.aspx");

PDFSign.TimeStamping.PolicyOID = new
System.Security.Cryptography.Oid("1.3.7.2.9.1.829.3");

Proxy Settings

If you are behind a Proxy server, a TSA request can be done using the following code:

PDFSign.TimeStamping.ServerURL = new
Uri("http://ca.signfiles.com/TSAServer.aspx");

//Code example:
//http://msdn.microsoft.com/en-us/library/system.net.httpwebrequest.proxy.aspx

//set the proxy settings
System.Net.WebProxy tsaProxy = new System.Net.WebProxy();
tsaProxy.Address = new Uri("http://myproxy.example.com:1024");
tsaProxy.Credentials = new System.Net.NetworkCredential("username", "password");

PDFSign.ProxySettings = tsaProxy;

Page 15 - .NET Digital Signature Library SDK User Manual (version 9.0)

Validating the Time Stamping Response on Adobe

As digital signatures certificates, the time stamping responses are signed by a certificate
issued by a Certification Authority.

If the time stamping certificate (or the Root CA that issued the time stamping certificate) is not
included in Adobe Store, the time stamping response could not be verified when a user open
a document with Adobe Reader (see example).

This behavior has nothing to do with the signing engine but with the Adobe
certification validation procedure.

To validate the signing certificate in Adobe use the methods described on this document:
http://www.signfiles.com/manuals/ValidatingDigitalSignaturesInAdobe.pdf.

Page 16 - .NET Digital Signature Library SDK User Manual (version 9.0)

Not verified timestamp

Trusted time stamping response

http://www.signfiles.com/manuals/ValidatingDigitalSignaturesInAdobe.pdf

LTV Signatures (Long Term Validation)

PAdES recognizes that digitally-signed documents may be used or archived for many years –
even many decades. At any time in the future, in spite of technological and other advances, it
must be possible to validate the document to confirm that the signature was valid at the time it
was signed – a concept known as Long-Term Validation (LTV).

In order to have a LTV signature, be sure that the certificate have a CRL and the revocation
info is included on the signature. Including a timestamp is also recommended.

If the CRL revocation information will not be available online, the digital signature cannot be
verified as Long Term Validation signature by the Adobe Reader engine.

PDFSign.IncludeCRLRevocationInfo = true;

Page 17 - .NET Digital Signature Library SDK User Manual (version 9.0)

Certify a PDF Digital Signature

When you certify a PDF, you indicate that you approve of its contents. You also specify the
types of changes that are permitted for the document to remain certified.

You can apply a certifying signature only if the PDF doesn’t already contain any other
signatures. Certifying signatures can be visible or invisible. A blue ribbon icon in the
Signatures panel indicates a valid certifying signature (see example).

More information about the certification process you can find here.

To certify a digital signature use the following code:

//adding annotations and form filling are allowed
PDFSign.CertifySignature = CertifyMethod.AnnotationsAndFormFilling;
//form filling is allowed
PDFSign.CertifySignature = CertifyMethod.FormFilling;
//no changes allowed
PDFSign.CertifySignature = CertifyMethod.NoChangesAllowed;

//digitally sign and save the PDF file
File.WriteAllBytes("c:\\dest.pdf", PDFSign.ApplyDigitalSignature());

Page 18 - .NET Digital Signature Library SDK User Manual (version 9.0)

Certified signature

http://help.adobe.com/en_US/Acrobat/9.0/Standard/WS58a04a822e3e50102bd615109794195ff-7d3d.w.html

Digital Signatures and the PDF/A Standard

PDF/A is a file format for the long-term archiving of electronic documents. It is based on the
PDF Reference Version 1.4 from Adobe Systems Inc. (implemented in Adobe Acrobat 5 and
latest versions) and is defined by ISO 19005-1:2005.

PDFSignDLL library can save PDF file in PDF/A-1b - Level B compliance in Part 1 standard.

Observation: In order to save a PDF/A-1b file all fonts used on the PDF document must be
embedded (including the font used on the digital signature rectangle).

To digitally sign a file in PDF/A-1b standard use the following code:

//Initializes a new instance of PDFSign class
PDFSign PDFSign = new PDFSign("serial number");

//Load the PDF file
PDFSign.LoadPDFDocument(File.ReadAllBytes("c:\\source.pdf"));

//Load the certificate from .PFX
PDFSign.DigitalSignatureCertificate =
PDFSign.LoadCertificate(File.ReadAllBytes("c:\\cert.pfx"), "123456");
PDFSign.SignaturePage = 1;
PDFSign.SignatureBasicPosition = BasicSignatureLocation.TopRight;

PDFSign.SaveAsPDFA = true;
PDFSign.FontFile = "c:\\windows\\fonts\\arial.ttf";

//digitally sign and save the PDF file
File.WriteAllBytes("c:\\dest.pdf", PDFSign.ApplyDigitalSignature());

Page 19 - .NET Digital Signature Library SDK User Manual (version 9.0)

PDF/A-1b document with digital signature

Other features of the PDFSignDll Library

Digitally Sign all Pages From a PDF Document

To add the digital signature rectangle to all pages from the PDF document use the following
code (the default values is false):

PDFSign.SignaturePage = 1;
PDFSign.SignatureBasicPosition = BasicSignatureLocation.TopRight;

PDFSign.SignatureToAllPages = true;

Adding Multiple Digital Signatures on the PDF Document

Digital signature is appended to the document in order to add multiple signatures to the
document. In order to add only one digital signature set the AppendSignature propery to false
(the default value is true). When you choose to encrypt and digitally sign a PDF file
AppendSignature property will be automatically set to false.

This is an invisible property and will not appear on autocomplete.

PDFSign.AppendSignature = false;

Set an Approximate Block Size for the Digital Signature

The default block size for the digital signature information is 16384 bytes. This space should
be enough for the digital signature information and the time stamping response.

In some cases, the size of the document is an critical factor so the size of the signed file can
be reduced by setting a lower value of the signature block size.

Observation: This value is approximative and cannot be set on the signed document to an
exact value so the final size of the signed file is not equal with the original file size +
SignatureByteBlockSize.

The digital signature block contains:
– public key of the signing certificate
– information like signing reason, signing location
– document signed digest in PKCS#7 format
– time stamping response

To set a custom space for the signature block size (this is an invisible property and will not
appear on autocomplete) use the following code:

PDFSign.SignatureByteBlockSize = 8192;

Page 20 - .NET Digital Signature Library SDK User Manual (version 9.0)

Old Style Adobe Digital Signature Appearance

To use an old style appearance of the digital signature rectangle (see example) set the
OldStyleAdobeSignature property to true. The default value is false.

This is an invisible property and will not appear on autocomplete.

PDFSign.OldStyleAdobeSignature = true;

Page 21 - .NET Digital Signature Library SDK User Manual (version 9.0)

Validity unknown signature

Signature valid

Include the CRL Revocation Information on the PDF Signature

If the CRL revocation information will not be available online, the digital signature cannot be
verified by the Adobe Reader engine so it is recommeded to include the CRL on the signature
block. The defauld value of the IncludeCRLRevocationInfo property is true.

To NOT include the revocation information, set the property to false.

PDFSign.IncludeCRLRevocationInfo = false;

Hash Algorithms

The default (and recommended) hash algorithm used by the library is SHA1 but in some
cases, SHA256/384/512 must be used (note that not all PDF readers can validate a such of
signature). To set the hash algorithm, use the following code:

PDFSign.HashAlgorithm = DigestAlgorithm.SHA256;

Also, the titme stamping requests/responses could be made using other hash algorithms, as
follow. Note that the time stamping server must support this algorithms.

PDFSign.TimeStamping.HashAlgorithm = DigestAlgorithm.SHA512;

Verifying the Signature Certificate

The signing certificate can be verified against OCSP and CRL before the signing operation.

PDFSign.VerifyDigitalCertificate(PDFSign.DigitalSignatureCertificate);

Bypass the Smart Card PIN Dialog

The smart card password dialog can be bypassed by specifying the smart card PIN like
below:

PDFSign.SmartCardPIN = "SmartCardPassword";

Because of some .NET Framework limitations, this option is not available for all the
smart card types. This property is supported only if the smart card allows to bypass
PIN.

Page 22 - .NET Digital Signature Library SDK User Manual (version 9.0)

PDF Signatures and Encryption

If you want to protect the signed document by preventing actions like printing or content
copying you must encrypt it. The document can be encrypted using passwords or digital
certificates.

Password Security

In order to encrypt the PDF document the AppendSignature propery must be set to false.
Also, the encryption algorithm must be specified using EncryptionAlgorithm property.

OwnerPassword property is used to set the password that protects the PDF document for
printing or content copying.

To digitally sign and encrypt a PDF document using a password use the following code:

//Initializes a new instance of PDFSign class
PDFSign PDFSign = new PDFSign("serial number");

//Load the PDF file
PDFSign.LoadPDFDocument(File.ReadAllBytes("c:\\source.pdf"));

//Load the certificate from .PFX
PDFSign.DigitalSignatureCertificate =
PDFSign.LoadCertificate(File.ReadAllBytes("c:\\cert.pfx"), "123456");
PDFSign.SignaturePage = 1;
PDFSign.SignatureBasicPosition = BasicSignatureLocation.TopLeft;

//append signature must be set to false in order to encrypt de document
PDFSign.AppendSignature = false;

//set the document restrictions
PDFSign.Encryption.DocumentRestrictions =
PDFDocumentRestrictions.AllowContentCopying |
PDFDocumentRestrictions.AllowFillingOfFormFields;

//set the encryption algorithm
PDFSign.Encryption.EncryptionAlgorithm =
PDFEncryptionAlgorithm.EnhancedEncryption128BitAES;

//set the encryption method
PDFSign.Encryption.EncryptionMethod = PDFEncryptionMethod.PasswordSecurity;

//set the owner password
PDFSign.Encryption.OwnerPassword = "123456";

//digitally sign, encrypt and save the PDF file
File.WriteAllBytes("c:\\dest.pdf", PDFSign.ApplyDigitalSignature());

Page 23 - .NET Digital Signature Library SDK User Manual (version 9.0)

When the signed and encrypted document is opened in a PDF reader, the security settings
are shown like below.

To digitally sign and protect the document with an opened password use the code below
instead of the commented line:

//PDFSign.Encryption.OwnerPassword = "123456";
PDFSign.Encryption.UserPassword = "123456";

When the document is opened in PDF reader, the passwor must be entered.

Page 24 - .NET Digital Signature Library SDK User Manual (version 9.0)

Security settings for a digitally sign and encrypted document

Password is required to open the document

Digital Certificate Security

The document can be also protected using a digital certificate. Remember that the digital
signature is created using the private key of the certificate. For the encryption the public key
of the certificate is necessary. The public key of the encryption certificates are stored on
Microsoft Store – Other People tab or in .cer files.

To encrypt a signed message using a digital certificate use the code below:

//append signature must be set to false in order to encrypt de document
PDFSign.AppendSignature = false;
//set the document restrictions
PDFSign.Encryption.DocumentRestrictions = PDFDocumentRestrictions.AllowNone;
//set the encryption algorithm
PDFSign.Encryption.EncryptionAlgorithm =
PDFEncryptionAlgorithm.StandardEncryption128BitRC4;
//set the encryption method
PDFSign.Encryption.EncryptionMethod = PDFEncryptionMethod.CertificateSecurity;

//use the digital certificates stored on Microsoft Store - Other People
PDFSign.Encryption.EncryptionCertificate = PDFSign.LoadCertificateFromStore(false,
"", "Encryption certificate", "Select the encryption certificate",
DigitalCertificateScope.ForEncryption);

If you want to encrypt the PDF file using a .CER file (public key) use the code below instead
of the commented lines:

//append signature must be set to false in order to encrypt de document
PDFSign.AppendSignature = false;
//set the document restrictions
PDFSign.Encryption.DocumentRestrictions = PDFDocumentRestrictions.AllowNone;
//set the encryption algorithm
PDFSign.Encryption.EncryptionAlgorithm =
PDFEncryptionAlgorithm.StandardEncryption128BitRC4;
//set the encryption method
PDFSign.Encryption.EncryptionMethod = PDFEncryptionMethod.CertificateSecurity;

//PDFSign.Encryption.EncryptionCertificate =
PDFSign.LoadCertificateFromStore(false, "", "Encryption certificate", "Select the
encryption certificate", DigitalCertificateScope.ForEncryption);

//loads the certificate from a .CER file
PDFSign.Encryption.EncryptionCertificate = new
System.Security.Cryptography.X509Certificates.X509Certificate2
(File.ReadAllBytes("c:\\encryption_certificate.cer"));

Page 25 - .NET Digital Signature Library SDK User Manual (version 9.0)

If the private key corresponding to the public key used for encryption is available on the
computer where the the encrypted file is opened, the security settings are shown like below:

Observation: A file encrypted with the public key can be opened only by the corresponding
private key of that certificate. If you want to encrypt a file for a person, you will need the public
key of the certificate issued for that person. If the file is encrypted with your certificate only
you can open that file. If the private key of the encryption certificate is not present a warning
message will be displayed like below:

Page 26 - .NET Digital Signature Library SDK User Manual (version 9.0)

Security settings for a digitally sign and encrypted document

Decryption certificate (private key) is not present

PDFSignDll Code Samples

Digitally Sign All Pages From a PDF File with a Certificate Stored on PFX File

PDFSign PDFSign = new PDFSign("serial number");
//load the pdf file
PDFSign.LoadPDFDocument("c:\\source.pdf");

//load the certificate
PDFSign.DigitalSignatureCertificate =
PDFSign.LoadCertificate(File.ReadAllBytes("c:\\cert.pfx"), "123456");
//put the signature to all pages
PDFSign.SignatureToAllPages = true;

//set the signature position
PDFSign.SignatureBasicPosition = BasicSignatureLocation.TopLeft;

//digitally sign and save the PDF file
File.WriteAllBytes("c:\\dest.pdf", PDFSign.ApplyDigitalSignature());

Set a Custom Signature Rectangle and Sign Using a Certificate from Microsoft Store

PDFSign PDFSign = new PDFSign("serial number");
PDFSign.LoadPDFDocument("c:\\source.pdf");

//load the certificate from Microsoft Store
PDFSign.DigitalSignatureCertificate = PDFSign.LoadCertificate(false, "", "Digital
certificates", "Select the digital certificate",
DigitalCertificateScope.ForDigitalSignature);

PDFSign.SignaturePage = 1;
//set the signature position
System.Drawing.Point pageRectangle = PDFSign.DocumentPageSize(1);

//put the signature on the middle of the page
PDFSign.SignaturePosition = new System.Drawing.Rectangle(pageRectangle.X / 2,
pageRectangle.Y / 2, 100, 50);

File.WriteAllBytes("c:\\dest.pdf", PDFSign.ApplyDigitalSignature());

Digitally Sign a PDF Located on the Web Only if it is not Already Signed

PDFSign PDFSign = new PDFSign("serial number");
//load the pdf file from web
PDFSign.LoadPDFDocument(new Uri("http://www.signfiles.com/test.pdf"));

//sign the document only if is not signed
if (PDFSign.DocumentProperties.NumberOfDigitalSignatures == 0)
{

PDFSign.DigitalSignatureCertificate =
PDFSign.LoadCertificate(File.ReadAllBytes("c:\\cert.pfx"), "123456");
PDFSign.SignaturePage = 1;
PDFSign.SignatureBasicPosition = BasicSignatureLocation.TopMiddle;
File.WriteAllBytes("c:\\dest.pdf", PDFSign.ApplyDigitalSignature());

}

Page 27 - .NET Digital Signature Library SDK User Manual (version 9.0)

Digitally Sign a PDF file with a PFX Certificate Created on the Fly

string certificatePassword = "tempP@ssword";

//create the digital certificate used to digitally sign the PDF document
X509CertificateGenerator cert = new X509CertificateGenerator();

//set the validity of the certificate (2 years from now)
cert.ValidFrom = DateTime.Now;
cert.ValidTo = DateTime.Now.AddYears(2);

//set the signing algorithm and the key size
cert.KeySize = KeySize.KeySize2048Bit;
cert.SignatureAlgorithm = SignatureAlgorithm.SHA1WithRSA;

//set the certificate subject
cert.Subject = "CN=Your User, E=useremail@email.com, O=Organzation";

//add some simple extensions to the client certificate
cert.Extensions.AddKeyUsage(CertificateKeyUsage.DigitalSignature);
cert.Extensions.AddKeyUsage(CertificateKeyUsage.DataEncipherment);

//add some enhanced extensions to the client certificate marked as critical

cert.Extensions.AddEnhancedKeyUsage(CertificateEnhancedKeyUsage.DocumentSigning);
cert.Extensions.AddEnhancedKeyUsage(CertificateEnhancedKeyUsage.SecureEmail);

//create the certificate
byte[] digitalCertificate = cert.GenerateCertificate(certificatePassword);

//create the PDF signature
PDFSign PDFSign = new PDFSign("serial number");

//Load the PDF file
PDFSign.LoadPDFDocument("d:\\source.pdf");

//Create a new certificate and load it
PDFSign.DigitalSignatureCertificate = PDFSign.LoadCertificate(digitalCertificate,
certificatePassword);

//Signing reason & location
PDFSign.SigningReason = "I approve this document";
PDFSign.SigningLocation = "Europe branch";

//Set the signature rectangle attributes
PDFSign.SignaturePage = 1;
PDFSign.SignatureBasicPosition = BasicSignatureLocation.TopRight;

//digitally sign the PDF file
File.WriteAllBytes("d:\\dest.pdf", PDFSign.ApplyDigitalSignature());

Page 28 - .NET Digital Signature Library SDK User Manual (version 9.0)

Set a Custom Text and Font for the Digital Signature Rectangle

PDFSign PDFSign = new PDFSign("serial number");

PDFSign.LoadPDFDocument("c:\\source.pdf");
PDFSign.DigitalSignatureCertificate =
PDFSign.LoadCertificate(File.ReadAllBytes("c:\\cert.pfx"), "123456");

PDFSign.SignaturePage = 1;
PDFSign.SignatureBasicPosition = BasicSignatureLocation.BottomLeft;

//set some signature properties
PDFSign.SigningReason = "Signing reason";
PDFSign.SigningLocation = "Signing location";
PDFSign.SignerContactInformation = "Contact information";

//set the font file
PDFSign.FontFile = "c:\\windows\\fonts\\verdana.ttf";
//set the font size
PDFSign.FontSize = 6;

//customize the text that appears on the signature rectangle
PDFSign.SignatureText = "Signed by: " +
PDFSign.DigitalSignatureCertificate.GetNameInfo(X509NameType.SimpleName, false) +
"\nSigning time: " + DateTime.Now.ToShortDateString() +
"\nSigning reason: " + PDFSign.SigningReason +
"\nLocation: " + PDFSign.SigningLocation;

File.WriteAllBytes("c:\\dest.pdf", PDFSign.ApplyDigitalSignature());

Add an Image on the Signature Rectangle and Save the File as PDF/A

PDFSign PDFSign = new PDFSign("serial number");

PDFSign.LoadPDFDocument("c:\\source.pdf");
PDFSign.DigitalSignatureCertificate =
PDFSign.LoadCertificate(File.ReadAllBytes("c:\\cert.pfx"), "123456");

PDFSign.SignaturePage = PDFSign.DocumentProperties.NumberOfPages;
PDFSign.SignatureBasicPosition = BasicSignatureLocation.BottomRight;

PDFSign.SignatureText = "Signed by the author";

//path to the signature image
PDFSign.SignatureImage = File.ReadAllBytes("c:\\graphic.jpg");
PDFSign.SignatureImagePosition = SignatureImageType.ImageAsBackground;

//the font must be embedded in orde to save the file as PDF/A
PDFSign.FontFile = "c:\\windows\\fonts\\verdana.ttf";
PDFSign.SaveAsPDFA = true;

File.WriteAllBytes("c:\\dest.pdf", PDFSign.ApplyDigitalSignature());

Page 29 - .NET Digital Signature Library SDK User Manual (version 9.0)

Set an Invisible Signature and Certify the PDF file

PDFSign PDFSign = new PDFSign("serial number");
PDFSign.LoadPDFDocument(File.ReadAllBytes("c:\\source.pdf"));
PDFSign.DigitalSignatureCertificate =
PDFSign.LoadCertificate(File.ReadAllBytes("c:\\cert.pfx"), "123456");

PDFSign.SignaturePage = 1;
PDFSign.SignatureBasicPosition = BasicSignatureLocation.TopMiddle;

PDFSign.SigningLocation = "My location";
PDFSign.SigningReason = "I am the author of this document";

//certify the signature
PDFSign.CertifySignature = CertifyMethod.NoChangesAllowed;

//set an invisible signature
PDFSign.VisibleSignature = false;

File.WriteAllBytes("c:\\dest.pdf", PDFSign.ApplyDigitalSignature());

Time Stamp a PDF file

PDFSign PDFSign = new PDFSign("serial number");
PDFSign.LoadPDFDocument(File.ReadAllBytes("c:\\source.pdf"));
PDFSign.DigitalSignatureCertificate =
PDFSign.LoadCertificate(File.ReadAllBytes("c:\\cert.pfx"), "123456");

PDFSign.SignaturePage = 1;
PDFSign.SignatureBasicPosition = BasicSignatureLocation.TopMiddle;

//simply set the TSA server URL
PDFSign.TimeStamping.ServerURL = new
Uri("http://ca.signfiles.com/TSAServer.aspx");

File.WriteAllBytes("c:\\dest.pdf", PDFSign.ApplyDigitalSignature());

Time Stamp a PDF file Using Authentication

PDFSign PDFSign = new PDFSign("serial number");
PDFSign.LoadPDFDocument("c:\\source.pdf");
PDFSign.DigitalSignatureCertificate =
PDFSign.LoadCertificate(File.ReadAllBytes("c:\\cert.pfx"), "123456");
PDFSign.SignaturePage = 1;
PDFSign.SignatureBasicPosition = BasicSignatureLocation.TopMiddle;
PDFSign.OldStyleAdobeSignature = true;

//set the TSA server URL
PDFSign.TimeStamping.ServerURL = new
Uri("http://ca.signfiles.com/TSAServer.aspx");
//set username and password
PDFSign.TimeStamping.UserName = "username";
PDFSign.TimeStamping.Password = "P@ssw0rD";

File.WriteAllBytes("c:\\dest.pdf", PDFSign.ApplyDigitalSignature());

Page 30 - .NET Digital Signature Library SDK User Manual (version 9.0)

Digitally Sign and Time Stamp a folder with PDF files

PDFSign PDFSign = new PDFSign("serial number");
PDFSign.LoadPDFDocument("c:\\source.pdf");
PDFSign.DigitalSignatureCertificate =
PDFSign.LoadCertificate(File.ReadAllBytes("c:\\cert.pfx"), "123456");
PDFSign.SignatureBasicPosition = BasicSignatureLocation.TopLeft;
PDFSign.SignaturePage = 1;

PDFSign.TimeStamping.ServerURL = new
Uri("http://ca.signfiles.com/TSAServer.aspx");

System.IO.DirectoryInfo di;
System.IO.FileInfo[] rgFiles;
//get the pdf files from the folder
di = new System.IO.DirectoryInfo("c:\\source_dir");
rgFiles = di.GetFiles("*.pdf");

foreach (FileInfo fi in rgFiles)
{

//for readonly files
fi.Attributes = FileAttributes.Normal;
//load the PDF document
PDFSign.LoadPDFDocumentFromFile(di.FullName + "\\" + fi.Name);
//digitally sign and save the PDF file
File.WriteAllBytes("c:\\output_dir\\" + fi.Name,

PDFSign.ApplyDigitalSignature());
}

Digitally Sign a PDF file in a ASP.NET application (IIS)

protected void Page_Load(object sender, EventArgs e)
{

PDFSign PDFSign = new PDFSign("serial number");

//set the signing certificate
//the PFX certificate must use MachineKeySet
PDFSign.DigitalSignatureCertificate = new

System.Security.Cryptography.X509Certificates.X509Certificate2(Server.MapPath("cer
t.pfx"), "123456",
System.Security.Cryptography.X509Certificates.X509KeyStorageFlags.MachineKeySet);

PDFSign.LoadPDFDocument(Server.MapPath("source.pdf"));

PDFSign.SignatureBasicPosition = BasicSignatureLocation.TopLeft;
PDFSign.SignaturePage = 1;

System.IO.File.WriteAllBytes(Server.MapPath("dest.pdf"),
PDFSign.ApplyDigitalSignature());
}

Page 31 - .NET Digital Signature Library SDK User Manual (version 9.0)

Verifying a Digital Signature

In some cases is needed to verify the digital signatures attached to a PDF document.

To verify the digital signatures added to PDF document use the following code:

PDFSign PDFSign = new PDFSign("serial number");
PDFSign.LoadPDFDocument("c:\\source.pdf");

foreach (PDFSignatureInformation psi in
PDFSign.DocumentProperties.DigitalSignatures)
{
Console.WriteLine("Signature name: " + psi.SignatureName);
Console.WriteLine("Digest Algorithm: " + psi.DigestAlgorithm);
Console.WriteLine("Signing Reason: " + psi.SigningReason);
Console.WriteLine("Signing location: " + psi.SigningLocation);
Console.WriteLine("Signer: " + psi.DigitalSignatureCertificate.SubjectName.Name);
Console.WriteLine("Signing date: " + psi.SignatureDate.ToString());
Console.WriteLine("Signature is timestamped:" + psi.IsTimeStamped.ToString());
Console.WriteLine("Is signature valid: " + psi.IsSignatureValid.ToString());
}

Page 32 - .NET Digital Signature Library SDK User Manual (version 9.0)

Merge Multiple PDF Files into a Single PDF File

If you need to merge multiple PDF files into a single one, use the following code:

List<byte[]> sourceFiles = new List<byte[]>();

sourceFiles.Add(File.ReadAllBytes("c:\\1.pdf"));
sourceFiles.Add(File.ReadAllBytes("c:\\2.pdf"));
sourceFiles.Add(File.ReadAllBytes("c:\\3.pdf"));
sourceFiles.Add(File.ReadAllBytes("c:\\4.pdf"));

File.WriteAllBytes("c:\\merge.pdf", PdfMerge.MergeFiles(sourceFiles));

Insert Texts and Images in a PDF file

PdfInsertObject PdfInsertImage = new PdfInsertObject();

/***************************
Insert images on PDF document
***************************/
PdfInsertImage.LoadPDFDocument("c:\\source.pdf");

//adds an image on a specific rectangle location on the page 1. The image will be
placed over the PDF content of the page.
PdfInsertImage.AddImage(File.ReadAllBytes("c:\\watermark.png"), new
System.Drawing.Rectangle(10, 10, 100, 100), 1, ImagePosition.ImageOverContent);

//adds an image that will cover all the page 2. The image will be placed under the
PDF content (backgorund) of the page.
PdfInsertImage.AddImage(File.ReadAllBytes("c:\\watermark.png"), 2,
ImagePosition.ImageUnderContent);

//adds an image that will start on a specific starting position on the page 3. The
image will not be resized. The image will be placed over the PDF content of the
page.
PdfInsertImage.AddImage(File.ReadAllBytes("c:\\watermark.png"), new
System.Drawing.Point(200, 200), 3, ImagePosition.ImageOverContent);

//adds an image on the top right corner of the document.
PdfInsertImage.AddImage(File.ReadAllBytes("c:\\signature_image.jpg"), new
System.Drawing.Rectangle(PdfInsertImage.DocumentProperties.DocumentPageSize(4).X -
100, PdfInsertImage.DocumentProperties.DocumentPageSize(4).Y - 100, 100, 100), 4,
ImagePosition.ImageOverContent);

//adds an image on the top left corner of the document.
PdfInsertImage.AddImage(File.ReadAllBytes("c:\\signature_image.jpg"), new
System.Drawing.Rectangle(0,
PdfInsertImage.DocumentProperties.DocumentPageSize(5).Y - 100, 100, 100), 5,
ImagePosition.ImageOverContent);

//adds an image on all document pages over the text.
PdfInsertImage.AddImage(File.ReadAllBytes("c:\\certificate_graphic.png"), new
System.Drawing.Point(100, 100), 0, ImagePosition.ImageOverContent);

//adds an image on all document pages under the text in the middle.

Page 33 - .NET Digital Signature Library SDK User Manual (version 9.0)

PdfInsertImage.AddImage(File.ReadAllBytes("c\\watermark.png"), new
System.Drawing.Rectangle(PdfInsertImage.DocumentProperties.DocumentPageSize(3).X /
2, PdfInsertImage.DocumentProperties.DocumentPageSize(3).Y / 2, 100, 100), 0,
ImagePosition.ImageUnderContent);

/***************************
Insert texts on PDF document
*****************************/

CustomText custText = new CustomText();
custText.Align = TextAlign.Left;
custText.FontFile = "c:\\arial.ttf";
custText.FontSize = 8;
custText.PageNumber = 1;
custText.StartingPointPosition = new System.Drawing.Point(100, 100);
custText.Text = "The first text inserted";
custText.TextColor = iTextSharp.text.BaseColor.BLUE;

PdfInsertImage.AddText(custText); //add the first text

CustomText custText2 = new CustomText();
custText2.Align = TextAlign.Left;
custText2.FontFile = "c:\\arial.ttf";
custText2.FontSize = 6;
custText2.PageNumber = 1;
custText2.StartingPointPosition = new System.Drawing.Point(80, 150);
custText2.TextDirection = TextDirection.RightToLeft;
custText2.Text = "יהול קופה, ניהול מלאאי";
custText2.TextColor = iTextSharp.text.BaseColor.BLACK;

PdfInsertImage.AddText(custText2); //add the second text

File.WriteAllBytes("c:\\destination.pdf", PdfInsertImage.InsertObjects());
//insert objects and save the PDF file

Page 34 - .NET Digital Signature Library SDK User Manual (version 9.0)

FileSignDll Library

FileSignDll.dll can be used to create PKCS#7 (CMS/CadES), XML, XPS or Office 2007-2013
digital signatures.

Creating PKCS#7 (CMS/CAdES) signatures using FileSignDll

PKCS7Sign pkcs7Sign = new PKCS7Sign("serial number");
DigitalCertificates certificate = new DigitalCertificates();

//load the certificate from a PFX file
pkcs7Sign.DigitalSignatureCertificate =
certificate.LoadCertificate("d:\\cert.pfx", "123456");

//optionally, the file can be timestamped
//pkcs7Sign.TimeStamping.ServerURL = new
Uri("http://ca.signfiles.com/TSAServer.aspx");

//the file can be saved as .p7s or .p7m file
File.WriteAllBytes("d:\\test.txt.p7s", pkcs7Sign.SignFile("d:\\test.txt"));

PKCS7Verify pkcs7Verify = new PKCS7Verify("d:\\test.txt.p7s", "serial number");

Console.WriteLine("Number of signatures: " + pkcs7Verify.Signatures.Count);
Console.WriteLine("Original document name: " + pkcs7Verify.DocumentName);

//the signed document can contains multiple signatures
foreach (SignatureInfo si in pkcs7Verify.Signatures)
{

Console.WriteLine("Signature is valid: " + si.SignatureIsValid);
Console.WriteLine("Hash algorithm: " + si.HashAlgorithm.FriendlyName);
Console.WriteLine("Signing Certificate: " +

si.SignatureCertificate.SubjectName.Name);
Console.WriteLine("Signing Reason: " + si.SignatureReason);
Console.WriteLine("Signing Date: " +

si.SignatureTime.ToLocalTime().ToString());
Console.WriteLine("Is timestamped: " + si.Timestamping.IsTimeStamped);
if (si.Timestamping.IsTimeStamped == true)
{

Console.WriteLine("Time stamp certificate: " +
si.Timestamping.Certificate.SubjectName.Name);

Console.WriteLine("Time Stamp Signature date: " +
si.Timestamping.SignatureTime.ToLocalTime().ToString());

}
}

//extract and save the unsigned document
File.WriteAllBytes("d:\\[unsigned]" + pkcs7Verify.DocumentName,
pkcs7Verify.UnsignedDocument);

Page 35 - .NET Digital Signature Library SDK User Manual (version 9.0)

Digitally Sign an Office Document (.docx, .xlsx)

OfficeSign officeSign = new OfficeSign("serial number");
DigitalCertificates digitalCertificate = new DigitalCertificates();

officeSign.DigitalSignatureCertificate =
digitalCertificate.LoadCertificate("d:\\cert.pfx"), "123456");

//Load the certificate from Microsoft Store
//officeSign.DigitalSignatureCertificate =
digitalCertificate.LoadCertificate(false, "", "Digital certificates", "Select the
digital certificate", DigitalCertificateScope.ForDigitalSignature);

//sign DOCX document
officeSign.SignOfficeDocument("d:\\TestDOCX.docx", "d:\\TestDOCX[signed].docx");

//sign XLSX document
officeSign.SignOfficeDocument("d:\\TestXLSX.xlsx", "d:\\TestXLSX[signed].xlsx");

//verify signature
Console.WriteLine("Digital signature verification: " +
officeSign.VerifyDigitalSignature("d:\\TestDOCX[signed].docx", 1));

Page 36 - .NET Digital Signature Library SDK User Manual (version 9.0)

Page 37 - .NET Digital Signature Library SDK User Manual (version 9.0)

Page 38 - .NET Digital Signature Library SDK User Manual (version 9.0)

Digitally Sign an XPS Document

XPSSign xpsSign = new XPSSign("serial number");

DigitalCertificates digitalCertificate = new DigitalCertificates();

xpsSign.DigitalSignatureCertificate =
digitalCertificate.LoadCertificate("D:\\cert.pfx"), "123456");

//Load the certificate from Microsoft Store
//xpsSign.DigitalSignatureCertificate = digitalCertificate.LoadCertificate(false,
"", "Digital certificates", "Select the digital certificate",
DigitalCertificateScope.ForDigitalSignature);

xpsSign.AllowMultipleSignatures = false;
xpsSign.SigningIntent = "Signing intent";
xpsSign.SigningLocation = "Signing location";

//sign XPS document
xpsSign.SignXPSDocument("d:\\TestXPS.xps", "D:\\TestXPS[signed].xps");

//verify signature
Console.WriteLine("Digital signature verification: " +
xpsSign.VerifyDigitalSignature("d:\\TestXPS[signed].xps", 1));

Page 39 - .NET Digital Signature Library SDK User Manual (version 9.0)

Digitally Sign an XML Document (XMLDSig Format)

XMLSign xmlSign = new XMLSign(_SERIAL_NUMBER_);

DigitalCertificates digitalCertificate = new DigitalCertificates();

xmlSign.DigitalSignatureCertificate =
digitalCertificate.LoadCertificate("d:\\cert.pfx"), "123456");

//Load the certificate from Microsoft Store
//xmlSign.DigitalSignatureCertificate = digitalCertificate.LoadCertificate(false,
"", "Digital certificates", "Select the digital certificate",
DigitalCertificateScope.ForDigitalSignature);

//sign the XML document
xmlSign.SignXMLDocument("d:\\TestXML.xml", "d:\\TestXML[signed].xml");

//verify signature
Console.WriteLine("Digital signature is valid: " + xmlSign.VerifyDigitalSignature(
"d:\\TestXML[signed].xml", 1));

Page 40 - .NET Digital Signature Library SDK User Manual (version 9.0)

Creating Digital Certificates Using X509CertificateGenerator Class

The main function of X509CertificateGenerator is to issue X.509 Version 3 digital certificates
in PFX format. Using this library you can quickly issue all kind of certificates (user, self signed,
root, time stamping, digital signature).

Certificate Subject

Every certificate must have a Subject. The Subject can contains Unicode characters like ä,æ,
£, Ñ.

Set the Subject property:
X509CertificateGenerator cert = new X509CertificateGenerator();
//comma character is not permitted on the Subject name
cert.Subject = "CN=Certificate name,E=name@email.com,O=Organization";

//save the PFX certificate on a file
File.WriteAllBytes("c:\\cert.pfx", cert.GenerateCertificate("password", false));

Page 41 - .NET Digital Signature Library SDK User Manual (version 9.0)

Certificate Subject

Validity Period

Every certificate has a validity period. A certificate becomes invalid after it expires. To set the
validity period of the certificate use the following code:

X509CertificateGenerator cert = new X509CertificateGenerator();
//set the certificate Subject
cert.Subject = "CN=Certificate name,E=name@email.com,O=Organization";

//the certificate becomes valid after 4th February 2012
cert.ValidFrom = new DateTime(2012, 2, 4);

//the certificate will expires on 25th February 2012
cert.ValidTo = new DateTime(2012, 2, 25);

//save the PFX certificate on a file
File.WriteAllBytes("c:\\cert.pfx", cert.GenerateCertificate("password", false));

The default value of ValidFrom property is DateTime.Now (curent date).

The default value of ValidTo property is DateTime.Now.AddYears(1).

Observation: On the demo version of the library, the certificate validity cannot exceed
30 days (this is the single limitation of the library on the demo version).

Page 42 - .NET Digital Signature Library SDK User Manual (version 9.0)

Certificate validity period

Key Size and Signature Algorithm

The certificates issued by X509Dll use RSA algorithm (RSA is an algorithm for public-key
cryptography that is based on the presumed difficulty of factoring large integers).

To set the key size and the signature algorithm of the certificate, use the following code:

X509CertificateGenerator cert = new X509CertificateGenerator();
//set the certificate Subject
cert.Subject = "CN=Certificate name,E=name@email.com,O=Organization";

//an RSA 2048 key will be used
cert.KeySize = KeySize.KeySize2048Bit;

//the certificate will use SHA256 hash algorithm
cert.SignatureAlgorithm = SignatureAlgorithm.SHA256WithRSA;

//save the PFX certificate on a file
File.WriteAllBytes("c:\\cert.pfx", cert.GenerateCertificate("password", false));

The default value of KeySize property is KeySize.KeySize1024Bit and should be enough for
common certificates. For the Root certificates a 2048 key could be used.

The default value of SignatureAlgorithm property is SignatureAlgorithm.SHA1WithRSA.

Observation: The certificate will requires more time to be generated if a larger key size is
used.

Page 43 - .NET Digital Signature Library SDK User Manual (version 9.0)

Certificate Key Size and Signature Algorithm

http://en.wikipedia.org/wiki/RSA_(algorithm)

Serial Number

Every certificate must have a serial number. If the SerialNumber property is not set, a random
value will be used.

To set the certificate serial number, use the code below:

 //set the certificate serial number
cert.SerialNumber = 123456789012;

The serial number can be lately used to identify a certificate but, according to X.509 standard,
the certificate serial number appears on the digital certificate in hexadecimal notation. To set
the serial number in hexadecimal format, use the code below:

//set the certificate serial number in hexadecimal format
cert.SerialNumber = long.Parse("1cbe991a14",
System.Globalization.NumberStyles.AllowHexSpecifier);

Page 44 - .NET Digital Signature Library SDK User Manual (version 9.0)

Certificate serial number

Friendly Name

When the certificate is imported to Microsoft Store, it will appear on the certificate list. If more
certificates has the same subject, in order to identify a specific certificate, FriendlyName
property can be set.

To set the certificate friendly name, use the code below:

cert.FriendlyName = "Certificate friendly name";

Page 45 - .NET Digital Signature Library SDK User Manual (version 9.0)

Certificate friendly name

Certificate Key Usage

Key Usage

A CA, user, computer, network device, or service can have more than one certificate. The Key
Usage extension defines the security services for which a certificate can be used. The options
can be used in any combination and can include the following:

DataEncipherment - The public key can be used to directly encrypt data, rather than
exchanging a symmetric key for data encryption.

DigitalSignature - The certificate use the public key for verifying digital signatures that have
purposes other than non-repudiation, certificate signature, and CRL signature.

KeyEncipherment - The certificate use the public key for key transport.

NonRepudiation - The certificate use the public key for verifying a signature on CRLs.

CRLSigning - The certificate use the public key for verifying a signature on certificates.

CertificateSigning - The certificate use the public key for key agreement.

KeyAgreement - The certificate public key may be used only for enciphering data while
performing key agreement.

EncipherOnly - The certificate public key may be used only for enciphering data while
performing key agreement.

DecipherOnly - The certificate public key may be used only for enciphering data while
performing key agreement.

For a simple certificate, the most used Key Usages are: DigitalSignature, NonRepudiation,
KeyEncipherment and DataEncipherment.

For a Root Certificate (CA certificate), the most used Key Usages are: CertificateSigning and
CRLSigning.

Page 46 - .NET Digital Signature Library SDK User Manual (version 9.0)

To add Key Usage to a digital certificate, use the following code:

cert.Extensions.AddKeyUsage(CertificateKeyUsage.DigitalSignature);
cert.Extensions.AddKeyUsage(CertificateKeyUsage.NonRepudiation);
cert.Extensions.AddKeyUsage(CertificateKeyUsage.KeyEncipherment);
cert.Extensions.AddKeyUsage(CertificateKeyUsage.DataEncipherment);

Page 47 - .NET Digital Signature Library SDK User Manual (version 9.0)

Page 48 - .NET Digital Signature Library SDK User Manual (version 9.0)

Page 49 - .NET Digital Signature Library SDK User Manual (version 9.0)

Page 50 - .NET Digital Signature Library SDK User Manual (version 9.0)

Page 51 - .NET Digital Signature Library SDK User Manual (version 9.0)

Certificate Key Usage

Enhanced Key Usage

This extension indicates how a certificate’s public key can be used. The Enhanced Key Usage
extension provides additional information beyond the general purposes defined in the Key
Usage extension. For example, OIDs exist for Client Authentication (1.3.6.1.5.5.7.3.2), Server
Authentication (1.3.6.1.5.5.7.3.1), and Secure E-mail (1.3.6.1.5.5.7.3.4).

When a certificate is presented to an application, an application can require the presence of
an Enhanced Key Usage OID specific to that application.

The library supports a lot of well known Enhanced Key Usages but also support to specify a
custom Enhanced Key Usage extension.

Some of Enhanced Key Usages available by default on the library are:

CodeSigning - The certificate can be used for signing code.

SmartcardLogon - The certificate enables an individual to log on to a computer by using a
smart card.

DocumentSigning - The certificate can be used for signing documents.

TimeStamping - The certificate can be used for signing public key infrastructure timestamps
according to RFC 3161.

To add Enhanced Key Usage to a digital certificate, use the following code:

cert.Extensions.AddEnhancedKeyUsage(CertificateEnhancedKeyUsage.SmartcardLogon);
cert.Extensions.AddEnhancedKeyUsage(CertificateEnhancedKeyUsage.TimeStamping);
cert.Extensions.AddEnhancedKeyUsage(CertificateEnhancedKeyUsage.SecureEmail);

To add a custom Enhanced Key Usage extension, see below:

cert.Extensions.AddEnhancedKeyUsage(new
System.Security.Cryptography.Oid("1.2.3.4.5.6.7.8.9.10.11"));

Page 52 - .NET Digital Signature Library SDK User Manual (version 9.0)

Critical Key Usage

In some scenarios, Key Usage or Enhanced Key Usage must be set as Critical extension.

By default, these properties are considered non-critical but the behavior can be changed as
below:

cert.Extensions.AddEnhancedKeyUsage(CertificateEnhancedKeyUsage.TimeStamping);
cert.Extensions.AddEnhancedKeyUsage(CertificateEnhancedKeyUsage.SecureEmail);
cert.Extensions.AddEnhancedKeyUsage(new
System.Security.Cryptography.Oid("1.2.3.4.5.6.7.8.9.10.11"));

//set Enhanced Key Usage as critical
cert.Extensions.EnhancedKeyUsageIsCritical = true;
cert.Extensions.KeyUsageIsCritical = false;

Page 53 - .NET Digital Signature Library SDK User Manual (version 9.0)

Key usage and Enhanced Key usage

Issuing Digital Certificates

Issue a Self-signed Digital Certificate

A self-signed certificate is not issued by a Root CA so it cannot be verified as “trusted”.

To issue a self signed certificate, use the following code:

X509CertificateGenerator cert = new X509CertificateGenerator();

//set the validity of the certificate
cert.ValidFrom = DateTime.Now;
cert.ValidTo = DateTime.Now.AddYears(2);

//set the signing algorithm and the key size
cert.KeySize = KeySize.KeySize1024Bit;
cert.SignatureAlgorithm = SignatureAlgorithm.SHA256WithRSA;

//set the certificate subject
cert.Subject = "CN=Certificate name,E=name@email.com,O=Organization";

cert.Extensions.AddKeyUsage(CertificateKeyUsage.DigitalSignature);
cert.Extensions.AddKeyUsage(CertificateKeyUsage.NonRepudiation);

cert.Extensions.AddEnhancedKeyUsage(CertificateEnhancedKeyUsage.DocumentSigning);
cert.Extensions.AddEnhancedKeyUsage(CertificateEnhancedKeyUsage.SecureEmail);

//set Enhanced Key Usage as critical
cert.Extensions.EnhancedKeyUsageIsCritical = true;

//create the PFX certificate
File.WriteAllBytes("C:\\cert.pfx", cert.GenerateCertificate("P@ssword"));

//optionally, save the public part to see the certificate
File.WriteAllBytes("c:\\user.cer", new
System.Security.Cryptography.X509Certificates.X509Certificate2("c:\\cert.pfx",
"P@ssword").RawData);

Page 54 - .NET Digital Signature Library SDK User Manual (version 9.0)

Because the certificate is a self-signed certificate, when it is opened (e.g. c:\user.cer) or the
PFX file is imported on Microsoft Store, it will appear as “untrusted”.

Page 55 - .NET Digital Signature Library SDK User Manual (version 9.0)

A self-signed certificate

Issue a Root Certificate

A Root Certificate (CA certificate) is a special type of certificate that can be used to digitally
sign other certificates. Also, a Root Certificate can also sign other Root Certificates.

To issue a Root Certificate, use the code below:

//on the demo version the certificates will be valid 30 days only
//this is the single restriction of the library in demo mode
X509CertificateGenerator cert = new X509CertificateGenerator();

//set the validity of the Root certificate
cert.ValidFrom = DateTime.Now;
cert.ValidTo = DateTime.Now.AddYears(5);

//set the signing algorithm and key size
cert.KeySize = KeySize.KeySize2048Bit;
cert.SignatureAlgorithm = SignatureAlgorithm.SHA512WithRSA;

cert.Subject = "CN=Root Certificate,E=root@email.com,O=Organization Root";

//add some extensions to the certificate marked as critical
cert.Extensions.AddKeyUsage(CertificateKeyUsage.DigitalSignature);
cert.Extensions.KeyUsageIsCritical = true;

bool isRootCertificate = true;
File.WriteAllBytes("C:\\root.pfx",
cert.GenerateCertificate("Root_password", isRootCertificate));

Note that creating a Root certificate is very similar with creating a self signed certificate. The
only main difference is on the second parameter of GenerateCertificate() method that must be
set to true.

Also, some Key Usage extension is automatically added for a Root Certificate as below:

Page 56 - .NET Digital Signature Library SDK User Manual (version 9.0)

Key usage for a Root Certificate

The Root Certificate is used for issue other certificates. When a Root Certificate issues a
client certificate and this certificate is imported on Microsoft (including the Root Certificate),
the entire hierarchy will look like this:

Page 57 - .NET Digital Signature Library SDK User Manual (version 9.0)

Page 58 - .NET Digital Signature Library SDK User Manual (version 9.0)

Page 59 - .NET Digital Signature Library SDK User Manual (version 9.0)

Root certificate issued other certificates

Issue a Digital Certificate Signed by a Root Certificate

In some cases, is necessary to issue certificates for an entire organization. On this scenario
you have two options:

– Issue a self signed certificates for every entity (see section Creating a self-signed
digital certificate).

– Issue a Root Certificate and every certificate issued for an entity to be issued (signed)
by this Root Certificate.

To issue a digital certificate signed by a Root Certificate, use the code below:

//Issue the Root certificate first

X509CertificateGenerator root = new X509CertificateGenerator();

//set the validity of the Root certificate
root.ValidFrom = DateTime.Now;
root.ValidTo = DateTime.Now.AddYears(5);

//set the signing algorithm and key size
root.KeySize = KeySize.KeySize2048Bit;
root.SignatureAlgorithm = SignatureAlgorithm.SHA512WithRSA;

root.Subject = "CN=Root Certificate,E=root@email.com,O=Organization Root";

bool isRootCertificate = true;
File.WriteAllBytes("C:\\root.pfx",
root.GenerateCertificate("Root_password", isRootCertificate));

//Issue the User Certificate
X509CertificateGenerator cert = new X509CertificateGenerator();

//load the root certificate to sign the intermediate certificate
cert.LoadRootCertificate(File.ReadAllBytes("c:\\root.pfx"), "Root_password");

cert.Subject = "CN=Certificate issued by Root,E=name@email.com,O=Organization";

//set the validity of the certificate
cert.ValidFrom = DateTime.Now;
cert.ValidTo = DateTime.Now.AddYears(1);

//set the signing algorithm and key size
cert.KeySize = KeySize.KeySize1024Bit;
cert.SignatureAlgorithm = SignatureAlgorithm.SHA1WithRSA;

File.WriteAllBytes("c:\\user.pfx", cert.GenerateCertificate("123456"));

Page 60 - .NET Digital Signature Library SDK User Manual (version 9.0)

After the client certificate is imported on Microsoft Store, the user certificate will look like this:

Page 61 - .NET Digital Signature Library SDK User Manual (version 9.0)

An User Certificate issued a Root Certificate

Importing Digital Certificates

Digital Certificates and Microsoft Store

Usually, the digital certificates are stored in two places:
– in Microsoft Store
– in PFX on P12 files

A PFX file can be imported on Microsoft Store as on the next section.

The certificates stored on Microsoft Store are available by opening Internet Explorer – Tools
menu – Internet Options – Content tab – Certificates button (see below) or by entering
certmgr.msc command on Run window.

For digital signatures, the certificates stored on Personal tab are used. These certificates
have a public and a private key.

The Root Certificates are stored on Trusted Root Certification Authorities tab.

The digital signature is created by using the private key of the certificate. The private key can
be stored on the file system (imported PFX files), on an cryptographic smart card (like Aladdin
eToken or SafeNet iKey) or on a HSM (Hardware Security Module).

For encryption, only the public key of the certificate is necessary (certificates stored on
Personal or Other People tabs).

Another way to store a digital certificate is a PFX (or P12) file. This file contain the public and
the private key of the certificate. This file is protected by a password in order to keep safe the
key pair.

Page 62 - .NET Digital Signature Library SDK User Manual (version 9.0)

Signing certificates available on Microsoft Store

Importing PFX Certificates on Microsoft Store

The PFX file can be imported on Microsoft Store (just open the PFX file and follow the
wizard).

In order to install the certificate, follow this steps:
– double click on the PFX file (e.g. c:\cert.pfx)
– click Next
– click Next again (or browse for other PFX file)
– enter the PFX certificate password (e.g. P@ssword)
– click Next, Next
– click Finish.

Trusting Certificates

When a user certificate is issued by a Root Certificate, in order to trust the user certificate, the
Root Certificate must be imported on Microsoft Store – Trusted Root Certification Authorities.

When the PFX user certificate is imported on Microsoft Store, the Root Certificate can be also
imported as follow:

At this step, the Root Certificate is imported and every certificate issued by this Root is

Page 63 - .NET Digital Signature Library SDK User Manual (version 9.0)

Importing the Root Certificate on Microsoft Store

considered trusted.

Anyway, if a document or email message is digitally signed by the client certificate and the
document/email is opened on other computer, the digital signature might be considered
untrusted because the Root certificate is not imported on that computer so the Root
Certificate must be manually imported on every client machine that will be related with
this certificate.

Because the Root Certificate is not included by default in Microsoft Store – Trusted Root
Certification Authorities, the Root Certificate that issues the User Certificate must be imported
on that store when the PFX certificate is imported.

See more details at this link: Validating Digital Certificates in Windows

More advanced options to manually install certificates on the client machines are available by
using Certmgr.exe (Certificate Manager Tool).

Other useful links:

• Adding digital signature and encryption in Outlook emails
• Adding digital signature on Mozilla Thunderbird emails
• Validating digital signatures in Adobe

Importing Certificates From Code

In order to add the Root Certificate on Microsoft Store, use the following code:

using System.Security.Cryptography.X509Certificates;

//open the Microsoft Root Store
var store = new X509Store(StoreName.Root, StoreLocation.CurrentUser);
store.Open(OpenFlags.ReadWrite);

try
{

var cert = new X509Certificate2(File.ReadAllBytes("c:\\root.cer"));
 //use dirrectly the PFX
 //var cert = new X509Certificate2("c:\\root.pfx", "Root_password");

store.Add(cert);
}
finally
{

store.Close();
}

Page 64 - .NET Digital Signature Library SDK User Manual (version 9.0)

http://www.signfiles.com/manuals/ValidatingDigitalSignaturesInAdobe.pdf
http://www.signfiles.com/manuals/DigitalSignatureThunderbird.pdf
http://www.signfiles.com/manuals/DigitalSignatureEncryptionOutlook.pdf
http://msdn.microsoft.com/en-us/library/e78byta0.aspx
http://www.signfiles.com/manuals/ValidatingDigitalCertificatesInWindows.pdf

Issue Digital Signature Certificates

Digital certificates can be used for digitally sign PDF, Office, XPS documents or email
messages.

The time digital signature certificate profile will look like this:
- It is recommended to be issued by a Root Certificate (not self signed certificate).
- Use RSA1024 key size (or RSA 2048 for more security).
- Key Usage: Digital Signature.
- Extended Key Usage - add ONLY Time Stamping extension (OID: 1.3.6.1.5.5.7.3.8) marked
as critical.
- Expiration date: 1 year or more.

In order to create a certificate for digital signature, use the code below:

//Issue the Root Certificate
//on the demo version the certificates will be valid 30 days only
//this is the single restriction of the library in demo mode
X509CertificateGenerator root = new X509CertificateGenerator();

//set the validity of the Root certificate
root.ValidFrom = DateTime.Now;
root.ValidTo = DateTime.Now.AddYears(10);

//set the signing algorithm and key size
root.KeySize = KeySize.KeySize2048Bit;
root.SignatureAlgorithm = SignatureAlgorithm.SHA512WithRSA;

root.Subject = "CN=Root Certificate,E=root@email.com,O=Organization Root";

File.WriteAllBytes("C:\\root.pfx", root.GenerateCertificate("Root_password",
true));

//Issue the digital signature certificate
X509CertificateGenerator cert = new X509CertificateGenerator();

//load the root certificate to sign the intermediate certificate
cert.LoadRootCertificate(File.ReadAllBytes("c:\\root.pfx"), "Root_password");

cert.Subject = "CN=Digital Signature Certificate,E=email@email.com,
O=Organization";

//set the validity of the certificate
cert.ValidFrom = DateTime.Now;
cert.ValidTo = DateTime.Now.AddYears(1);

//set the signing algorithm and key size
cert.KeySize = KeySize.KeySize2048Bit;
cert.SignatureAlgorithm = SignatureAlgorithm.SHA1WithRSA;
//add the certificate key usage
cert.Extensions.AddKeyUsage(CertificateKeyUsage.DigitalSignature);
cert.Extensions.AddKeyUsage(CertificateKeyUsage.NonRepudiation);

Page 65 - .NET Digital Signature Library SDK User Manual (version 9.0)

//for encryption - optionally
cert.Extensions.AddKeyUsage(CertificateKeyUsage.DataEncipherment);

//add the certificate enhanced key usage
cert.Extensions.AddEnhancedKeyUsage(CertificateEnhancedKeyUsage.DocumentSigning);
cert.Extensions.AddEnhancedKeyUsage(CertificateEnhancedKeyUsage.SecureEmail);
cert.Extensions.EnhancedKeyUsageIsCritical = true;

File.WriteAllBytes("c:\\userCertificate.pfx",
cert.GenerateCertificate("user_password"));

After the certificate is created and imported, it can be used for digital signature.

Page 66 - .NET Digital Signature Library SDK User Manual (version 9.0)

Adding a digital signature on a PDF document

License Terms

PDFSignDll License Agreement (EULA)

Important! Read the following terms carefully before installing, copying and/or using the
product. Installing, copying or using the product indicates your acceptance of these terms, as
well the terms in the contract between Client and Secure Soft.

This End-User License Agreement ("EULA") is a legal agreement between Client and Secure
Soft governing the use of the software (SOFTWARE) accompanying this EULA, including any
and all associated media, printed materials, and "online" or electronic documentation
protected by copyright laws. By installing, copying, or otherwise using the SOFTWARE, you
agree to be bound by the terms of this EULA. If you do not agree with the terms of this EULA,
do not use the SOFTWARE.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES. In no event shall Secure Soft or its
suppliers be liable for any damages whatsoever (including, without limitation, damages for
loss of business profits, business interruption, loss of business information, or other pecuniary
loss) arising out of the use of or inability to use the SOFTWARE, even if Secure Soft has been
advised of the possibility of such damages. Because some states do not allow the exclusion
or limitation of liability, for consequential or incidental damages, the above limitation may not
apply to you. Liability of the Vendor will be limited to a maximum of the original purchase price
of the Software. The Vendor will not be liable for any general, special, incidental or
consequential damages including, but not limited to, loss of production, loss of profits, loss of
revenue, loss of data, or any other business or economic disadvantage suffered by the
Licensee arising out of the use or failure to use the Software. The Vendor makes no warranty
expressed or implied regarding the fitness of the Software for a particular purpose or that the
Software will be suitable or appropriate for the specific requirements of the Licensee. The
Vendor does not warrant that use of the Software will be uninterrupted or error-free. The
Licensee accepts that software in general is prone to bugs and flaws within an acceptable
level as determined in the industry.

TERMINATION. Without prejudice to any other rights, Secure Soft may terminate this EULA if
you fail to comply with the terms and conditions of this EULA. In such an event, you must
destroy all copies of the SOFTWARE, all of its component parts and uninstall the
SOFTWARE.

WARRANTIES. The SOFTWARE is supplied "as is", Secure Soft does not guarantee that the
SOFTWARE will carry no errors, nor will it take on any liability for damages more than written
here. Secure Soft does not warrant that the SOFTWARE will meet further requirements.
However, Secure Soft states that every reasonable effort has been made to avoid presence of
any possible malevolent code in the SOFTWARE (including, but not limited to, viruses,
trojans, root kits and/or spyware) and declares that to the best knowledge of competent
experts of Secure Soft the SOFTWARE does not contain any such malware. Supplemental
enhances and updates are subject to other contracts.

NO OTHER WARRANTIES. Secure Soft disclaims all other warranties, either express or

Page 67 - .NET Digital Signature Library SDK User Manual (version 9.0)

implied, including but not limited to implied warranties of merchantability and fitness for a
particular purpose, with respect to the SOFTWARE and the accompanying written materials.
This limited warranty gives you specific legal rights. You may have other which vary from state
to state.

MISCELLANEOUS. This EULA comes into force when you accept all the conditions stated
herein.

CONTROLLING LAW AND SEVERABILITY. This License shall be governed by the laws of
the Romania. If for any reason a court of competent jurisdiction finds any provision, or portion
thereof, to be unenforceable, the remainder of this License shall continue in full force and
effect.

OTHER LICENSES

PDFSignDll library is compiled using Microsoft .NET Framework 2.0 and it is based on the
MPL / LGPLv2 version of the iTextSharp 4.1.6 library. The original library and all changes are
available here: http://www.signfiles.com/license/PDFSignDllSRC.zip

ITextSharp is subject to the Mozilla Public License Version 1.1 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy of the License at
http://www.mozilla.org/MPL/

Software distributed under the License is distributed on an "AS IS" basis, WITHOUT
WARRANTY OF ANY KIND, either express or implied. See the License for the specific
language governing rights and limitations under the License.

The Original Code is 'iText, a free JAVA-PDF library'. The Initial Developer of the Original
Code is Bruno Lowagie. Portions created by the Initial Developer are Copyright (C) 1999,
2000, 2001, 2002 by Bruno Lowagie.
All Rights Reserved.

Co-Developer of the code is Paulo Soares. Portions created by the Co-Developer are
Copyright (C) 2000, 2001, 2002 by Paulo Soares. All Rights Reserved.

Contributor(s): all the names of the contributors are added in the source code where
applicable.

Alternatively, the contents of this file may be used under the terms of the LGPL license (the
"GNU LIBRARY GENERAL PUBLIC LICENSE"), in which case the provisions of LGPL are
applicable instead of those above. If you wish to allow use of your version of this file only
under the terms of the LGPL License and not to allow others to use your version of this file
under the MPL, indicate your decision by deleting the provisions above and replace them with
the notice and other provisions required by the LGPL. If you do not delete the provisions
above, a recipient may use your version of this file under either the MPL or the GNU
LIBRARY GENERAL PUBLIC LICENSE.

Page 68 - .NET Digital Signature Library SDK User Manual (version 9.0)

This library is free software; you can redistribute it and/or modify it under the terms of the MPL
as stated above or under the terms of the GNU Library General Public License as published
by the Free Software Foundation either version 2 of the License, or any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Library general Public License for more details.

Copyright (c) 2000 - 2011 The Legion of the Bouncy Castle Inc. (http://www.bouncycastle.org)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Page 69 - .NET Digital Signature Library SDK User Manual (version 9.0)

FileSignDll License Agreement (EULA)

Important! Read the following terms carefully before installing, copying and/or using the
product. Installing, copying or using the product indicates your acceptance of these terms, as
well the terms in the contract between Client and Secure Soft.

This End-User License Agreement ("EULA") is a legal agreement between Client and Secure
Soft governing the use of the software (SOFTWARE) accompanying this EULA, including any
and all associated media, printed materials, and "online" or electronic documentation
protected by copyright laws. By installing, copying, or otherwise using the SOFTWARE, you
agree to be bound by the terms of this EULA. If you do not agree with the terms of this EULA,
do not use the SOFTWARE.

COPYRIGHT. The SOFTWARE is the proprietary property of or under license to Secure Soft
SRL and is protected by Romanian copyright laws and international treaty provisions.
Therefore, you must treat the software like any other copyrighted material.

RESTRICTIONS. You may not reverse engineer, decompile or disassemble the SOFTWARE.
Your rights under this License will terminate automatically without notice from Secure Soft if
you fail to comply with any term(s) of the License.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES. In no event shall Secure Soft or its
suppliers be liable for any damages whatsoever (including, without limitation, damages for
loss of business profits, business interruption, loss of business information, or other pecuniary
loss) arising out of the use of or inability to use the SOFTWARE, even if Secure Soft has been
advised of the possibility of such damages. Because some states do not allow the exclusion
or limitation of liability, for consequential or incidental damages, the above limitation may not
apply to you. Liability of the Vendor will be limited to a maximum of the original purchase price
of the Software. The Vendor will not be liable for any general, special, incidental or
consequential damages including, but not limited to, loss of production, loss of profits, loss of
revenue, loss of data, or any other business or economic disadvantage suffered by the
Licensee arising out of the use or failure to use the Software. The Vendor makes no warranty
expressed or implied regarding the fitness of the Software for a particular purpose or that the
Software will be suitable or appropriate for the specific requirements of the Licensee. The
Vendor does not warrant that use of the Software will be uninterrupted or error-free. The
Licensee accepts that software in general is prone to bugs and flaws within an acceptable
level as determined in the industry.

TERMINATION. Without prejudice to any other rights, Secure Soft may terminate this EULA if
you fail to comply with the terms and conditions of this EULA. In such an event, you must
destroy all copies of the SOFTWARE, all of its component parts and uninstall the
SOFTWARE.

WARRANTIES. The SOFTWARE is supplied "as is", Secure Soft does not guarantee that the
SOFTWARE will carry no errors, nor will it take on any liability for damages more than written
here. Secure Soft does not warrant that the SOFTWARE will meet further requirements.

Page 70 - .NET Digital Signature Library SDK User Manual (version 9.0)

However, Secure Soft states that every reasonable effort has been made to avoid presence of
any possible malevolent code in the SOFTWARE (including, but not limited to, viruses,
trojans, root kits and/or spyware) and declares that to the best knowledge of competent
experts of Secure Soft the SOFTWARE does not contain any such malware. Supplemental
enhances and updates are subject to other contracts.

NO OTHER WARRANTIES. Secure Soft disclaims all other warranties, either express or
implied, including but not limited to implied warranties of merchantability and fitness for a
particular purpose, with respect to the SOFTWARE and the accompanying written materials.
This limited warranty gives you specific legal rights. You may have other which vary from state
to state.

MISCELLANEOUS. This EULA comes into force when you accept all the conditions stated
herein.

LICENSE GRANT AND RESTRICTIONS. Secure Soft grants you a non-exclusive right to use
the SOFTWARE under the terms of this EULA.

CONTROLLING LAW AND SEVERABILITY. This License shall be governed by the laws of
the Romania. If for any reason a court of competent jurisdiction finds any provision, or portion
thereof, to be unenforceable, the remainder of this License shall continue in full force and
effect.

COPYRIGHT NOTES

Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

All other trademarks are property of their respective owners.

Page 71 - .NET Digital Signature Library SDK User Manual (version 9.0)

	How to use .NET Digital Signature Library SDK in Visual Studio
	Digital Certificates
	Digital Certificates Used for Digital Signatures
	Create a Digital Certificate Using X509CertificateGenerator Class
	Digitally Sign a PDF File Using a Digital Certificate Stored on a PFX File
	Digitally Sign a PDF File Using a Digital Certificate Stored on Microsoft Store
	Validating Digital Signatures in Adobe

	Digitally Sign a PDF Document with PDFSignDLL
	Loading the PDF
	Digitally Sign an Encrypted PDF File
	Obtaining the Document Information (Number of Pages, Page Size)
	Set the Digital Signature Properties (Reason, Location)
	Set the Digital Signature Rectangle Properties
	Set a Custom Digital Signature Text
	Set the Text Direction on the Signature Rectangle
	Set the Digital Signature Font
	Set the Digital Signature Image
	Set a Visible or Hidden Signature

	Time Stamping
	Time Stamp the PDF Digital Signature
	Authentication With Username and Password
	Authentication with a Digital Certificate
	Nonce and Time Stamping Policy OID
	Proxy Settings
	Validating the Time Stamping Response on Adobe

	LTV Signatures (Long Term Validation)
	Certify a PDF Digital Signature
	Digital Signatures and the PDF/A Standard
	Other features of the PDFSignDll Library
	Digitally Sign all Pages From a PDF Document
	Adding Multiple Digital Signatures on the PDF Document
	Set an Approximate Block Size for the Digital Signature
	Old Style Adobe Digital Signature Appearance
	Include the CRL Revocation Information on the PDF Signature
	Hash Algorithms
	Verifying the Signature Certificate
	Bypass the Smart Card PIN Dialog

	PDF Signatures and Encryption
	Password Security
	Digital Certificate Security

	PDFSignDll Code Samples
	Digitally Sign All Pages From a PDF File with a Certificate Stored on PFX File
	Set a Custom Signature Rectangle and Sign Using a Certificate from Microsoft Store
	Digitally Sign a PDF Located on the Web Only if it is not Already Signed
	Digitally Sign a PDF file with a PFX Certificate Created on the Fly
	Set a Custom Text and Font for the Digital Signature Rectangle
	Add an Image on the Signature Rectangle and Save the File as PDF/A
	Set an Invisible Signature and Certify the PDF file
	Time Stamp a PDF file
	Time Stamp a PDF file Using Authentication
	Digitally Sign and Time Stamp a folder with PDF files
	Verifying a Digital Signature
	Merge Multiple PDF Files into a Single PDF File
	Insert Texts and Images in a PDF file

	FileSignDll Library
	Creating PKCS#7 (CMS/CAdES) signatures using FileSignDll
	Digitally Sign an Office Document (.docx, .xlsx)
	Digitally Sign an XPS Document
	Digitally Sign an XML Document (XMLDSig Format)

	Creating Digital Certificates Using X509CertificateGenerator Class
	Certificate Subject
	Validity Period
	Key Size and Signature Algorithm
	Serial Number
	Friendly Name

	Certificate Key Usage
	Key Usage
	Enhanced Key Usage
	Critical Key Usage

	Issuing Digital Certificates
	Issue a Self-signed Digital Certificate
	Issue a Root Certificate
	Issue a Digital Certificate Signed by a Root Certificate

	Importing Digital Certificates
	Digital Certificates and Microsoft Store
	Importing PFX Certificates on Microsoft Store
	Trusting Certificates
	Importing Certificates From Code
	Issue Digital Signature Certificates

	License Terms
	PDFSignDll License Agreement (EULA)
	FileSignDll License Agreement (EULA)

